Abstract

Flow electrode capacitive deionization (FCDI) is a promising configuration for capacitive deionization due to its capability of continuous operation and achieving a relatively large salinity reduction. Due to the complexity of the multi-phase flow involved in FCDI, modeling FCDI system performance has been a challenge with no predictive FCDI model thus far developed. In this study, we developed an equivalent film-electrode (EFE) model for FCDI in which the flow electrodes are approximated as moving film electrodes that behave in a manner similar to conveyor belts. The EFE-FCDI model is validated using results from a series of FCDI experiments and then applied to elucidate the spatial variations of the key properties of the FCDI system and to resolve the contributions of different aspects of the system to energy consumption. The impact of activated carbon loading in the flow electrode and the feed and effluent target concentrations on the overall FCDI performance are also discussed based on model simulation. In summary, the EFE-FCDI model enhances our understanding of the system-level behavior of FCDI systems and can be employed for optimizing FCDI design and operation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.