Abstract
The near-field structure of strongly buoyant jet issuing from a square nozzle at low Froude and Reynolds numbers is studied by using LIF flow visualization and time-resolved scanning PIV. These experimental techniques allow the visualization of unsteady three-dimensional flow phenomenon occurring in the near-field of strongly buoyant jet. It is found that the buoyant jet is unstable to the positive buoyancy forces, which promote the inflow motion near the nozzle exit. The surrounding low temperature fluid moves into the nozzle inside along the nozzle corner and mixes with the high temperature fluid deep into the nozzle. Then, the flow pattern inside the nozzle becomes highly complex to promote the laminar to turbulent transition of the jet. The statistical flow characteristics of the strongly buoyant jet are evaluated from the scanning PIV measurement, and the result indicates the presence of axisymmetric distributions of mean flow and velocity fluctuations in the circle of diameter equal to the square side of the nozzle.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have