Abstract

Predictive power and final shape are very important in the forging process. This study used a finite element method to analyze the forging force, final shape and stress distribution of the cellphone shell forging at different temperatures. To predict the results of FEM simulation accurately, the stress flow and friction factor play an important role. The AL-6061 stress-strain curve at different temperatures was obtained from the compression test of the universal material testing machine. The friction factor between Al-6061 alloy and die is determined by ring compression test.The stress-strain curve and friction factor are applied to the finite element analysis of cellphone forging. Finite element analysis is used to determine the maximum forging load, effective stress distribution and shape of cellphone shell forging. Then the cellphone shell is forged with the parameters of finite element analysis results. Finally, the forging force and product shape are compared between the experimental data and the simulation results. The dimension of the cellphone shell agree with the initial design and the forming force does not exceed the maximum allowable forging load of the machine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call