Abstract
Recent years have therefore seen growing interest in gear precision forging to net-shape form of forge bevel, spur and helical gears, as an alternative to conventional manufacturing. In this paper, gear precision forging processes are simulated by using metal forming finite element code DEFORM-3D. The investigations of gear precision forging processes are conducted with perform forging and final forging processes. The processes of completely closed-die forging, moving-die forging and central divided flow forging processes are investigated for spur gears. The effect of different processes on the distribution of effective stress in the workpieces and forging loads are given. The purpose of this study is to introduce a new method, a so-called floating-relief method which applied to the forging of spur gears. It indicated that the flowing properties of the gear billet have a higher improve than that of conventional forging process. And the forging load obtained by using this new precision forging technology is decline sharply. The floating-relief method for gear precision forging is a sound process in the practical application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.