Abstract

Granular rheology is experimentally investigated in a vertical Couette-Poiseuille-like channel flow of photoelastic disks, where an erodible bed is sheared intermittently by an upward-moving shear band and a gravity-induced reverse flow. The shear band conforms to the existing nonlocal Eyring-like rheology but the bed exhibits discontinuous shear thickening from the Bagnold inertial regime near the band-bed interface to the Herschel-Bulkley plastic regime near the static wall. This newly discovered bed rheology is rate dependent and is associated with the fragility of the contact networks indicated by the statistics of local stress states inferred from the material photoelastic responses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call