Abstract

Discontinuous shear thickening in dense suspensions naturally emerges from the activation of frictional forces by shear flow in non-Brownian systems close to jamming. Yet, this physical picture is incomplete as most experiments study soft colloidal particles subject to thermal fluctuations. To characterize discontinuous shear thickening in colloidal suspensions, we use computer simulations to provide a complete description of the competition between athermal jamming, frictional forces, thermal motion, particle softness, and shear flow. We intentionally neglect hydrodynamics, electrostatics, lubrication, and inertia, but can nevertheless achieve quantitative agreement with experimental findings. In particular, shear thickening corresponds to a crossover between frictionless and frictional jamming regimes which is controlled by thermal fluctuations and particle softness and occurs at a softness dependent Péclet number. We also explore the consequences of our findings for constant pressure experiments, and critically discuss the reported emergence of "S-shaped" flow curves. Our work provides the minimal ingredients to quantitatively interpret a large body of experimental work on discontinuous shear thickening in colloidal suspensions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.