Abstract
Flow rate estimation for ventricular assist devices without additional flow sensors can improve the quality of life of patients. In this article, a novel flow estimation method using the passively stabilized displacement of a magnetically levitated impeller is developed to achieve sufficient accuracy and precision of flow estimation for ventricular assist devices in a simple manner. The magnetically levitated impeller used is axially suspended by a magnetic bearing in a centrifugal blood pump that has been developed by our group. The radial displacement of the impeller, which is restricted by passive stability, can be correlated with the flow rate because the radial hydraulic force on the impeller varies according to the flow rate. To obtain the correlation with various blood viscosities, the relationships between the radial displacements of the magnetically levitated impeller and the pressure head-flow rate characteristics of the pump were determined simultaneously using aqueous solutions of glycerol with a potential blood viscosity range. The measurement results showed that accurate steady flow rates could be estimated with a coefficient of determination of approximately 0.97 and mean absolute error of approximately 0.22 L/min without fluid viscosity measurements by using the relationships between the impeller displacement and the flow rate. Moreover, a precision of approximately 0.01 (L/min)/µm was obtained owing to a strong estimation indicator signal provided by the large displacement of the passively stabilized impeller; thus, the proposed estimation method can help ensure sufficient accuracy and precision for ventricular assist devices in a simple manner, even if the blood viscosity is unknown.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.