Abstract
The interaction between blood from end-stage renal failure patients undergoing hemodialysis treatment and the hemodialysis (HD) membranes used may lead to DNA damage, contingent upon the biocompatibility of the membranes. Given that this process could impact the disease's course, it is crucial to assess the efficacy of DNA repair mechanisms. In our study, we investigated the gene expression levels of XRCC1 and PARP1 enzymes, which are involved in the base excision repair (BER) repair mechanism crucial for repairing oxidative DNA damage, in 20 end-stage renal disease (ESRD) patients undergoing HD treatment both before and after dialysis sessions. Additionally, we compared our findings with those from 20 healthy controls. We assessed gene expression levels using real-time polymerase chain reaction (qRT-PCR). We observed that the HD process utilizing a polysulfone membrane did not impact the expression levels of genes. However, we noted a lower expression level of the PARP1 gene in ESRD patients undergoing HD compared to the control group (0.021 ± 0.005 vs 0.0019 ± 0.0013, p = 0.0001). Although our study findings indicate that HD membranes do not affect gene expression overall, the specific decrease in PARPI gene expression suggests that the effectiveness of the BER DNA repair mechanism is impaired in ESRD patients, which may play a significant role in the progression of the disease.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.