Abstract
We conduct a computational study of flow-induced pitch oscillations of a rigid airfoil at a chord-based Reynolds number of 1000. A sharp-interface immersed boundary method is used to simulate two-dimensional incompressible flow, and this is coupled with the equations for a rigid foil supported at the elastic axis with a linear torsional spring. We explore the effect of spring stiffness, equilibrium angle-of-attack and elastic-axis location on the onset of flutter, and the analysis of the simulation data provides insights into the time scales and mechanisms that drive the onset and dynamics of flutter. The dynamics of this configuration includes complex phenomena such as bifurcations, non-monotonic saturation amplitudes, hysteresis and non-stationary limit-cycle oscillations. We show the utility of ‘maps’ of energy exchange between the flow and the airfoil system, as a way to understand, and even predict, this complex behaviour.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.