Abstract

The dynamics of an annular layer of low-viscosity liquid inside a rapidly rotating horizontal cylinder is experimentally studied. Under gravity, the liquid performs forced azimuthal oscillations in the cavity frame. We examined the stability of the two-dimensional azimuthal flow and discovered two novel types of axisymmetric liquid flows. First, a large-scale axially symmetric flow is excited near the end walls. The inertial modes generated in the corner regions are proven to be responsible for such a flow. Second, a small-scale flow in the form of the Taylor-Gortler vortices appears due to the centrifugal instability of the oscillatory liquid flow. The spatial period of the vortices is in qualitative agreement with the data obtained in the experimental and numerical studies of cellular flow in librating containers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.