Abstract

Steady-state flow patterns and deformation modes of coaxial liquid columns in transverse electric fields are studied analytically. The governing creeping flow equations are solved for Newtonian and (mutually) immiscible fluids in the framework of leaky dielectric theory. A detailed analysis of the electric and flow fields is presented and it is shown that there will be four possible flow patterns in and around the columns, in terms of the direction of the external flow (top-to-sides/bottom-to-sides vs. sides-to-top/sides-to-bottom) and the number of vortices (single vortex vs. double vortices) in the shell, and that the senses of the net electric shear stresses at the inner and the outer interfaces and their relative importance are the key parameters in setting these patterns. Equilibrium shapes of the interfaces are also found and it is shown that there are four distinct modes of deformation, depending on the governing nondimensional parameters of the problem. The instability of the jet is also examined qualitatively using the observations pertaining the instability of single-phase drops and jets and the scaling arguments based on the present solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.