Abstract

The motion of air through a channel of small exponential divergence has been investigated experimentally. A flow form derived by Blasius from theoretical considerations has been shown to exist in the range [Formula: see text] for the Reynolds number. The dependence of the general flow form on the initial velocity distribution where the divergence begins has been studied. It has been found that when this initial velocity distribution is parabolic, indicating a laminar motion in the throat of the channel, the flow form is symmetrical. Further investigations have shown that when the initial velocity distribution indicates that the motion near the walls in the throat of the channel lies in the transitional region between a laminar and a turbulent flow, then the flow form is unsymmetrical. Empirical equations have been obtained which give (1) the initial velocity distribution in the transitional region at R = 75.1, and (2) the motion near the walls where the divergence begins for Reynolds numbers lying in the range [Formula: see text].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.