Abstract

Researches on vibration of centrifugal pump induced by fluid exciting forces are significant for reducing equipment faults, which are caused by the vibration transferring from the base, and noise emission of shells which connected with the base. Fluid exciting forces are the main vibration sources in centrifugal pump systems. The vibration of impellers is generated by fluid exciting forces, and transferred to mechanical systems through pump shell and shaft bearings. By optimizing of inner flow filed of centrifugal pump, not only the fluid exciting forces can be reduced, but also the vibration level of the pump can be improved. In this paper, based on reducing noise and isolating vibration, the inner flow field of the centrifugal pump was emulated by CFD method. The flow field was optimized by controlling the impellers cutting process. The optimizing results were shown by comparing the pressure pulsation of the optimized flow field with those of the original flow field. The improvement of optimization was verification by measuring the vibration responses of the centrifugal pump base structure. The experimental results shows that: the level of flow field excitation and the pressure pulsation of flow field under the blade frequencies and multiplication frequencies are declined to some degree by cutting impellers; the vibration responses of pump base decreased 4.5 dB after cutting impeller.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call