Abstract
We present a new approach for streamline-based flow field representation and reduction. Our method can work in the in situ visualization setting by tracing streamlines from each time step of the simulation and storing compressed streamlines for post hoc analysis where users can afford longer reconstruction time for higher reconstruction quality using decompressed streamlines. At the heart of our approach is a deep learning method for vector field reconstruction that takes the streamlines traced from the original vector fields as input and applies a two-stage process to reconstruct high-quality vector fields. To demonstrate the effectiveness of our approach, we show qualitative and quantitative results with several data sets and compare our method against the de facto method of gradient vector flow in terms of speed and quality tradeoff.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.