Abstract
Static electrification in transformer oil is investigated experimentally using a laboratory synthetic closed cycle, where the oil is pumped in a coaxial electrode arrangement. The electrode system is electrically energized radially with dc and/or ac, and the electrostatic charging tendency (ECT) of the oil is quantified by measuring the streaming current. The results indicate that for the same voltage ratio (K=V/spl circ//(V/spl circ/+V)), increasing the ac or the dc voltage component leads to higher ECT of oil, although the ECT under only ac field is much lower than that under dc field. The unenergized streaming current is inherently affected by the electrode material and configuration; where electrodes having a lower work function give higher positive ECT of oil at high temperature. The energized streaming current increases with oil temperature, oil velocity and electric field; where negative dc voltage application to the outer electrode gives both higher conduction and streaming currents. While the conduction current decreases with oil velocity, increasing the frequency of mixed ac voltage has no significant effect on streaming current. Moreover, the effect of combined radial electric (ac or dc) and axial magnetic (ac or dc) fields on ECT of oil is investigated, and the results reveal that the ECT is enhanced by the magnetic field while the radial conduction current decreases. Derived formulas for the streaming current for unenergized and ac energized cases are also presented together with expressions of the volume and surface charge densities for the coaxial electrode system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Dielectrics and Electrical Insulation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.