Abstract

Models of pulse formation in nerve conduction have provided manifold insight not only into neuronal dynamics but also the nonlinear dynamics of pulse formation in general. Recent observation of neuronal electrochemical pulses also driving mechanical deformation of the tubular neuronal wall, and thereby generating ensuing cytoplasmic flow, now question the impact of flow on the electrochemical dynamics of pulse formation. Here, we theoretically investigate the classical Fitzhugh-Nagumo model, now accounting for advective coupling between the pulse propagator typically describing membrane potential and triggering mechanical deformations, and thus governing flow magnitude, and the pulse controller, a chemical species advected with the ensuing fluid flow. Employing analytical calculations and numerical simulations, we find that advective coupling allows for a linear control of pulse width while leaving pulse velocity unchanged. We therefore uncover an independent control of pulse width by fluid flow coupling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.