Abstract
A growing body of evidence shows that B-lymphocytes play an important role in the context of myocardial physiology and myocardial adaptation to injury. However, the literature reports contrasting data on the prevalence of myocardial B-cells. B-cells have been reported to be both among the most prevalent immune cells in the rodent heart or to be present, but at a markedly lower prevalence than myeloid cells, or to be quite rare. Similarly, several groups have described that the number of myocardial B-cells increases after acute ischemic myocardial injury, but one group reported no changes in the number of B-cells of the injured myocardium. Implementation of a shared, reproducible method to assess the prevalence of myocardial B-cells is critical to harmonize observations from different research groups and thus promote the advancement of the study of B-cell myocardial interactions. Based on our experience, the seemingly contrasting observations reported in the literature likely stem from the fact that murine myocardial B-cells are mostly intravascular and connected to the microvascular endothelium. Therefore, the number of B-cells recovered from a murine heart is exquisitely sensitive to the perfusion conditions used to clean the organ and to the method of digestion used. Here we report an optimized protocol that accounts for these two critical variables in a specific way. This protocol empowers reproducible, flow cytometry-based analysis of the number of murine myocardial B-cells and allows researchers to distinguish extravascular vs. intravascular myocardial B-cells.
Accepted Version
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have