Abstract
BackgroundPathologists commonly employ the Ki67 immunohistochemistry labelling index (LI) when deciding appropriate therapeutic strategies for patients with breast cancer. However, despite several attempts at standardizing the Ki67 LI, inter-observer and inter-laboratory bias remain problematic. We developed a flow cytometric assay that employed tissue dissociation, enzymatic treatment and a gating process to analyse Ki67 in formalin-fixed paraffin-embedded (FFPE) breast cancer tissue.ResultsWe demonstrated that mechanical homogenizations combined with thrombin treatment can be used to recover efficiently intact single-cell nuclei from FFPE breast cancer tissue. Ki67 in the recovered cell nuclei retained reactivity against the MIB-1 antibody, which has been widely used in clinical settings. Additionally, since the method did not alter the nucleoskeletal structure of tissues, the nuclei of cancer cells can be enriched in data analysis based on differences in size and complexity of nuclei of lymphocytes and normal mammary cells. In a clinical study using the developed protocol, Ki67 positivity was correlated with the Ki67 LI obtained by hot spot analysis by a pathologist in Japan (rho = 0.756, P < 0.0001). The number of cancer cell nuclei subjected to the analysis in our assay was more than twice the number routinely checked by pathologists in clinical settings.ConclusionsThe findings of this study showed the application of this new flow cytometry method could potentially be used to standardize Ki67 assessments in breast cancer.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have