Abstract

In his famous book entitled Theory of Oscillations, Nicolas Minorsky wrote: “each time the system absorbs energy the curvature of its trajectory decreases and vice versa”. By using the Flow Curvature Method, we establish that, in the ε-vicinity of the slow invariant manifold of generalized Liénard systems, the curvature of trajectory curve increases while the energy of such systems decreases. Hence, we prove Minorsky's statement for the generalized Liénard systems. These results are then illustrated with the classical Van der Pol and generalized Liénard singularly perturbed systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.