Abstract

Presented are results of molecular dynamics simulations that demonstrate flow gating through a polymer-grafted nanopore as a function of effective solvent quality. Analysis of density and flow profiles from the simulations show that the difference in drag force exerted on the flowing solvent due to different polymer brush configurations produces the effective fluid gating. Shear-induced permeability changes through these nanopores has also been investigated. These results establish a critical starting point in nanofluidics from which continuum modeling can be developed to design this emerging class of smart nanoporous materials with tailor-made properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.