Abstract

The wind tunnel experiments of separation flow control by a nanosecond-pulse-driven dielectric-barrier-discharge plasma actuator (ns-DBDPA) for three airfoil shapes of NASA-Common-Research-Model (NASA-CRM), Gottingen387, and NACA0015 airfoils were conducted and the results were compared. Aerodynamic forces, surface pressures, and particle image velocimetry images were obtained in the experiments. The results of the aerodynamic force and surface pressure measurements showed that the characteristics of the flow separation control by ns-DBDPA are clearly different depending on the airfoil shape, and particularly the type of stall. NACA0015 exhibited leading-edge stall under the conditions investigated, and ns-DBDPA achieved flow control by producing vortices. NASA-CRM exhibited thin-airfoil stall, and ns-DBDPA increased the maximum lift of the lift curve even after the stall. On the other hand, Gottingen387, which exhibited trailing-edge stall, achieved almost no flow control at any actuator position, actuation frequency, or voltage amplitude. The flow control mechanisms for different types of airfoils are discussed based on the particle image velocimetry measurement results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call