Abstract

It is known that for a square cylinder subjected to uniform flow, the drag force changes with the angle of attack. To clarify the flow characteristics around a square cylinder with corner cutoffs, we measured the drag coefficient and the Strouhal number for changing chamfer dimensions. We analyzed the flow around a square cylinder with corner cutoffs by applying the RNG k–e turbulent model, and investigated the surface flow pattern using visualization by means of the oil film and mist flow method. From these results, we obtained the surface flow patterns by the oil film method and numerical analysis. The numerical results agreed well with the experimental values. The drag coefficient of the square cylinder with corner cutoffs decreased suddenly at an angle of attack of about α = 0°– 10° when compared with the drag coefficient for a square cylinder. The minimum value of the drag coefficient for the square cylinder with corner cutoffs decreased by about 30% compared with that for the square cylinder. The drag coefficient of the square cylinder with 10% corner cutoffs was found to be smallest, since the wake area of this square cylinder was smaller compared with that of the other square cylinder.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.