Abstract
This research work concerns the investigation of electrically conducting stagnation point flow, heat and mass transport of magneto-Cross nanofluids towards a moving and stretched surface of thin needle. The Buongiorno nanofluid model is incorporated to model the governing expressions. The flow is conducted electrically and generated through stretching impact. Internal diffusion of particle, homogenous–heterogeneous reactions and radiative heat flux effects are utilized to examine the behavior of heat and mass transport on the surface of thin needle. Suitable similarity variables and boundary layer approximations are used to turn into dimensionless one. After that, numerical outcomes are computed by a Shooting method (bvp4c) package in MATLAB. The incentives of sundry relevant parameters on the flow field, skin friction coefficient, heat transfer rate, temperature field and concentration distribution are portrayed via graphical tactic and have been elucidated in detail. The outcomes indicate that the temperature distribution is more versus rising values of radiative heat flux, magnetic parameter and Eckert number.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.