Abstract

Fluid flow analyses and investigations of associated structural variations in rock formations are important due to the complex nature of rocks and the high heterogeneity that exists within fluid-rock systems. Variations in fluid-rock parameters need to be ascertained over time with continuous or cyclic fluid injection into subsurface rocks for enhanced oil recovery and other subsurface applications. This Review introduces the use of the core flooding-nuclear magnetic resonance (NMR) technique for analysis of combined fluid flow and structural features in subsurface fluid-rock systems. It presents a summary of the results realized by various researchers in this area of study. The influence of several conditions, such as geochemical interactions, wettability, inherent heterogeneities in fluid flow and rock properties, and variations in these parameters, is analyzed. We investigate NMR measurements for both single fluid phase saturation and multiphase saturation. Additionally, the processes for identifying and distinguishing different fluid phases are emphasized in this study. Furthermore, capillary pressure and its influence on fluid-rock parameters are also discussed. Although this study emphasizes subsurface rocks and enhanced oil recovery, the experimental combination is also extended to core flooding using several other injection fluids and porous media. Finally, research gaps pertaining to core flooding-NMR systems regarding fluid flow, structural changes, fluid-rock systems, and instrumentation are pointed out. Transient flow analysis involving structural variations is suggested for future work in this regard.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call