Abstract
Steady flow and heat transfer over a vertical permeable stretching/shrinking sheet with a second order slip is investigated using a second order slip flow model. Choosing appropriate similarity variables, the partial differential equations are transformed into ordinary (similarity) differential equations, which are then solved numerically using the function bvp4c from Matlab for different values of the governing parameters. The solutions of the ordinary (similarity) differential equations have two branches, upper and lower branch solutions, in a certain range of the suction and mixed convection parameters. A stability analysis has been performed to show that the upper branch solutions are stable and physically realizable, while the lower branch solutions are not stable and, therefore, not physically possible. The effects of the two mass suction and mixed convection parameters on the reduced skin friction coefficient, heat transfer from the surface of the sheet, dimensionless velocity and temperature distributions are presented graphically and discussed. These results clearly show that the second order slip flow model is necessary to predict the flow characteristics accurately.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have