Abstract
The effects of Reynolds number on flow through a tip gap are investigated by performing laminar flow calculations for an idealized two-dimensional tip gap geometry. The results of the calculations aid in understanding and reconciliation of low Much number turbine tip gap measurements, which range in tip gap Reynolds number from 100 to 10,000. For the higher Reynolds numbers, both the calculations and the measurements show a large separation off the sharp edge of the blade tip corner. For a high Reynolds number, fully turbulent flow calculations were also made. These also show a large separation and the results are compared with heat transfer measurements. At high Mach numbers, there are complex shock structures in the tip gap. These are modeled experimentally using a water table.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have