Abstract

Owing to the environmentally benign nature and the special property variation at supercritical pressure, CO2 attracts considerable attention in both science and engineering. The CO2 utilization is regarded as a sustainable way in long term and has become an important global issue. In the present study, a two-dimensional numerical model is used to study the convective flow and heat transfer characteristics of supercritical CO2 natural circulation in a uniform diameter rectangular loop. Parametric influences of the heat sink temperature, the inclination angle of the loop and the temperature difference on the convection motion and heat transfer performance have been studied. For a given temperature difference, the heat sink temperature has great effect on both flow and heat transfer performance. Increasing the inclination angle decelerates the convective flow and heat transfer processes due to the gradual decrease in buoyancy. With the increase of the temperature difference, both the flow rate and heat transfer performance are found to initially increase, reach a peak, and then decrease gradually. The underlying physics is explored.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.