Abstract
ABSTRACTIn this work, the effect of a variable spatial magnetic field on ferro-nanofluid flow and heat transfer in a double-sided lid-driven enclosure with a sinusoidal hot wall is investigated. The working fluid is a mixture of iron oxide (Fe3O4) nanoparticles and water and is referred to as a ferro-nanofluid. The control volume-based finite element method (CVFEM) is used to solve the governing equations in the stream function–vorticity formulation. In deriving the governing equations for this investigation, the effect of both ferro-hydrodynamics and magneto-hydrodynamics is taken into account. The numerical calculations are performed for different governing parameters namely; the Reynolds number, nanoparticle volume fraction, magnetic number (arising from Ferrohydrodynamics (FHD) consideration), and the Hartmann number (arising from Magnetohydrodynamics (MHD) consideration). The results show that an enhancement in heat transfer has a direct relationship with the Reynolds number and the Hartmann number, but it has an inverse relationship with the magnetic number. Also, it can be concluded that the Nusselt number increases with the increase of the nanoparticle volume fraction, magnetic number, and the Reynolds number while the opposite trend is observed for the Hartmann number.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.