Abstract

Surface features, anatomy, and ultrastructure of the floral nectary of Eccremocarpus scaber (Bignoniaceae), pollinated predominantly by the largest-known hummingbird (Patagona gigas gigas), were studied together with nectar sugar content and secretion rate. The annular disk nectary comprises epidermis, secretory and ground parenchyma with intercellular spaces, and branched vascular bundles terminating in the secretory parenchyma where only phloem is found. Amyloplasts and vacuoles increase in size throughout development, the latter becoming sites of organelle degradation. Transferlike cells in nectary phloem and P-proteinlike fibrillar material in phloem parenchyma were observed. Flowers produced around 32 μl of nectar (mostly after anthesis) with 11 mg of sugar composed of fructose, glucose, sucrose, and maltose in a ratio of 0.34:0.32:0.17:0.17. Morphological studies as well as the presence of maltose and glucose in nectar suggest storage of the originally phloem-derived sugars as starch with its subsequent hydrolysis. The low sucrose/hexose ratio (0.25) and high nectary secretion force (nectar per flower biomass) observed places E. scaber close to large-bodied bat-pollinated plants. A hypothesis based on nectar origin and nectar secretion is advanced to explain pollinator-correlated variation in sucrose/hexose ratio.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call