Abstract
We provide a general description of a time-local master equation for a system coupled to a non-Markovian reservoir based on Floquet theory. This allows us to have a divisible dynamical map at discrete times, which we refer to as Floquet stroboscopic divisibility. We illustrate the theory by considering a harmonic oscillator coupled to both non-Markovian and Markovian baths. Our findings provide us with a theory for the exact calculation of spectral properties of time-local non-Markovian Liouvillian operators, and might shed light on the nature and existence of the steady state in non-Markovian dynamics.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have