Abstract

Periodically driven Floquet quantum systems provide a promising platform to investigate novel physics out of equilibrium. Unfortunately, the drive generically heats up the system to a featureless infinite temperature state. For large driving frequency, the heat absorption rate is predicted to be exponentially small, giving rise to a long-lived prethermal regime which exhibits all the intriguing properties of Floquet systems. Here we experimentally observe Floquet prethermalization using nuclear magnetic resonance techniques. We first show the relaxation of a far-from-equilibrium initial state to a long-lived prethermal state, well described by the time-independent ''prethermal'' Hamiltonian. By measuring the autocorrelation of this prethermal Hamiltonian we can further experimentally confirm the predicted exponentially slow heating rate. More strikingly, we find that in the timescale when the effective Hamiltonian picture breaks down, the Floquet system still possesses other quasi-conservation laws. Our results demonstrate that it is possible to realize robust Floquet engineering, thus enabling the experimental observation of non-trivial Floquet phases of matter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call