Abstract
We consider driving multiorbital Mott insulators using laser radiation. We derive general expressions for periodically driven spin-orbital models using time-dependent perturbation theory in the strong interaction limit. We show that the effective exchange interactions of the Floquet spin-orbital Hamiltonian are highly tunable via variations of the frequency, amplitude, and polarization of the laser. We also take the effect of a finite bandwidth of excitations into account and study possible heating effects. We further apply our formalism to orthorhombic titanates YTiO_{3} and LaTiO_{3} based on first-principles calculations, and we find that the spin exchange interactions in these compounds can be engineered to a large extent by tuning the frequency and electric-field amplitude of the laser.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.