Abstract
We study flops of Calabi-Yau threefolds realised as Kähler-favourable complete intersections in products of projective spaces (CICYs) and identify two different types. The existence and the type of the flops can be recognised from the configuration matrix of the CICY, which also allows for constructing such examples. The first type corresponds to rows containing only 1s and 0s, while the second type corresponds to rows containing a single entry of 2, followed by 1s and 0s. We give explicit descriptions for the manifolds obtained after the flop and show that the second type of flop always leads to isomorphic manifolds, while the first type in general leads to non-isomorphic flops. The singular manifolds involved in the flops are determinantal varieties in the first case and more complicated in the second case. We also discuss manifolds admitting an infinite chain of flops and show how to identify these from the configuration matrix. Finally, we point out how to construct the divisor images and Picard group isomorphisms under both types of flops.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.