Abstract

The zeroth line bundle cohomology on Calabi-Yau three-folds encodes information about the existence of flop transitions and the genus zero Gromov-Witten invariants. We illustrate this claim by studying several Picard number 2 Calabi-Yau three-folds realised as complete intersections in products of projective spaces. Many of these manifolds exhibit certain symmetries on the Picard lattice which preserve the zeroth cohomology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.