Abstract
Core temperature monitoring system is an important component of reactor protection system in the current generation fast reactors. In this system, multiple thermocouples are housed inside a thermowell of fuel subassemblies. Response time of the thermocouple assembly forms an important input for safety analysis of fast reactor and hence frequent calibration/time constant estimation is essential. In fast reactors the central fuel subassembly is provided with bare fast response thermocouples to detect under cooling events in reactor and take proper safety action. On the other hand, thermocouples in thermowell are mainly used for blockage detection in individual fuel subassemblies. The time constant of thermocouples in thermowell can drift due to creep, vibration and thermal fatigue of the thermowell assembly. A novel method for in-situ estimation of time constant is proposed. This method uses the Safety Control Rod Accelerated Mechanism (SCRAM) or lowering of control Rod (LOR) signals of the reactor along with response of the central subassembly thermocouples as reference data. Validation of the procedure has been demonstrated by applying it to FBTR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.