Abstract

ABSTRACT Willows are frequently planted as unrooted cuttings in flood-prone areas. The occurrence of a flooding episode during the early stages of the plantation causes diverse morphological and physiological changes in willows. Thus, it is important to identify traits correlating to flooding tolerance to be used to breed genotypes with enhanced tolerance to this stress. In addition, flooding can change nitrogen absorption in plants, altering leaf nitrogen concentration. These changes could influence the photosynthetic activity, and ultimately, the growth of plantations. The aims of this work were: (i) to identify traits that increase flooding tolerance in willows during early growth and (ii) to analyze the effects of flooding on Assimilatory Nitrogen Use Efficiency (ANUE, measured as foliar biomass: foliar nitrogen concentration ratio). Two-month-old plants growing in pots of 29 willow genotypes were flooded with water covering 80% of the stem, for 43 days. At the end of this period, the flooding tolerance index (ratio between the flooded plant biomass to the non-flooded plant biomass) ranged between 39% and 103%. Flooding tolerance had a significant and positive correlation to plant height, diameter, total biomass, growth rate, leaf area, leaf number, and basic wood density. ANUE decreased in flooded plants in most genotypes, despite the increase in leaf nitrogen concentration. This implies that flooded plants were less efficient in the use of nitrogen to produce leaf biomass than the non-flooded treatment. These results are relevant for the selection of flooding tolerance in young willow plants obtained from rootless cuttings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call