Abstract

Flooding has been causing severe consequences worldwide, including loss of human life and damage to property. Flood risk mapping, as a nonstructural measure, is efficient for flood protection and disaster alleviation. This study aims at completing the flood risk mapping of the region located at the middle reaches of the Yarkant River Oasis in western China, which has a dry climate and suffers from mixed flooding consisting of glacial outburst floods (GLOFs) and many other floods. In view of the complexity of flooding in the area, the study adopts two typical types of scenarios, namely overflow scenarios and dike-break scenarios, to complete the flood risk mapping. The MIKE FLOOD 1D/2D coupled model is used for two-dimensional flood flow simulation to compute the inundation depths and duration for flood risk assessment. The spatial overlay analysis was then used to combine the modeling results and land use/land cover layers with socioeconomic data to generate flood risk maps and damage losses under different scenarios. It is noted that evaporation and infiltration losses in the study area are not negligible because of the long flood process, the low precipitation, and dry surface/subsurface conditions. Due to the insufficient evaporation and infiltration data, a new method of synthesis loss rate is proposed to compute the evaporation/infiltration loss rate. Based on the water balance principle, the upstream and downstream flow data is utilized to calculate the water attenuation, which is then used to estimate the evaporation/infiltration loss rate. The proposed method can solve the problem of calculating evaporation/infiltration loss rates during the flooding process in such data-scarce areas. The flood risk mapping results indicate that the flood risk is high along the Yarkant River and that floods can cause severe inundation losses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call