Abstract
Papua New Guinea is blessed with a plethora of enviable natural resources, but at the same time it is also cursed by quite a few natural disasters like volcanic eruptions, earthquakes, landslide, floods, droughts etc. Floods happen to be a natural process of maintaining the health of the rivers and depth of its thalweg; it saves the river from becoming morbid while toning up the fertility of the riverine landscape. At the same time, from human perspective, all these ecological goodies are nullified when flood is construed overwhelmingly as one of the most devastating events in respect to social and economic consequences. The present investigation was tailored to assess the use of multi-criteria decision approach (MCDA) in inland flood risk analysis. Categorization of possible flood risk zones was accomplished using geospatial data sets, like elevation, slope, distance to river, and land use/land cover, which were derived from digital elevation model (DEM) and satellite image, respectively. A pilot study area was selected in the lower part of Markham River in Morobe Province, Papua New Guinea. The study area is bounded by 146°31′ to 146°58′ east and 6°33′ to 6°46′ south; covers an area of 758.30 km2. The validation of a flood hazard risk map was carried out using past flood records in the study area. This result suggests that MCDA within GIS techniques is very useful in accurate and reliable flood risk analysis and mapping. This approach is convenient for the assessment of flood in any region, specifically in no-data regions, and can be useful for researchers and planners in flood mitigation strategies.
Highlights
Heavy rain, especially over the upper catchment, in a short period of time causes flooding or flash flooding in the lower catchment
Six other validation points (VP11 to VP16) are characterized as no flooding or inundation based on the PNGRIS database [38] which are situated in areas of either ‘low risk’ or ‘no risk’ of flooding based on the analysis output through multi-criteria decision approach (MCDA) (Table 6)
A flood risk map was developed based on multi-criteria decision approach (MCDA) using different geospatial data sets, like elevation, slope, distance to river, and land use/land cover
Summary
Especially over the upper catchment, in a short period of time causes flooding or flash flooding in the lower catchment. Flood risk mapping and hazard analysis for any watershed or drainage basin engage several factors or parameters and criteria [7,8]. Geographic information system (GIS) and remote sensing (RS) techniques have made significant contributions in natural hazard analysis [9,10]. During the last few decades, researchers were involved in developing different methods and models for natural hazard mapping using RS and GIS techniques [11,12]. This research is focussed on assessing the use of an MCDA approach in inland flood risk analysis based on four different geospatial data sets, like elevation, slope, distance to river, and land use/land cover. This research was conducted in the lower part of the Markham River in Morobe Province, Papua New Guinea
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.