Abstract
This paper reviews the efforts made and experiences gained in developing the Flood Prevention and Emergency Response System (FPERS) powered by Google Earth Engine, focusing on its applications at the three stages of floods. At the post-flood stage, FPERS integrates various remote sensing imageries, including Formosat-2 optical imagery to detect and monitor barrier lakes, synthetic aperture radar imagery to derive an inundation map, and high-spatial-resolution photographs taken by unmanned aerial vehicles to evaluate damage to river channels and structures. At the pre-flood stage, a huge amount of geospatial data are integrated in FPERS and are categorized as typhoon forecast and archive, disaster prevention and warning, disaster events and analysis, or basic data and layers. At the during-flood stage, three strategies are implemented to facilitate the access of the real-time data: presenting the key information, making a sound recommendation, and supporting the decision-making. The example of Typhoon Soudelor in August of 2015 is used to demonstrate how FPERS was employed to support the work of flood prevention and emergency response from 2013 to 2016. The capability of switching among different topographic models and the flexibility of managing and searching data through a geospatial database are also explained, and suggestions are made for future works.
Highlights
Like the other islands between Japan and the Philippines off the eastern and southeastern coasts of Asia, Taiwan is visited by three to four typhoons per year, on average
Some extreme cases of torrential and sustained rainfall brought by typhoons have caused flooding, severe damage, and significant loss of lives and properties in the past two decades, such as the flooding in Taipei caused by severe Typhoon Winnie (18 August 1997); the flooding in Kaohsiung and Pingtung caused by Tropical Storm Trami (11 July 2001); the flooding in Taipei and Keelung caused by Typhoon Nari (17 September 2001); the flooding in Kaohsiung and Pingtung caused by Typhoon Mindulle (2–4 July 2004); the flooding in middle and southern Taiwan caused by Typhoon Kalmaegi (17–18 July 2008), and the flooding in middle, eastern, and southern Taiwan caused by Typhoon Morakot (6–10 August 2009)
In light of the great potential revealed by the system, the Water Resource Agency (WRA) of Taiwan initiated a multi-year project from 2012 to 2016, which led to the development of the Flood Prevention and Emergency Response System (FPERS) powered by Google Earth Engine (GEE)
Summary
Like the other islands between Japan and the Philippines off the eastern and southeastern coasts of Asia, Taiwan is visited by three to four typhoons per year, on average. The data must be identified, collected, integrated, processed, analyzed, distributed, and visualized rapidly through the Internet, in order to support a variety of management decisions, a timely response to an urgent event This was not possible until the Google Earth application programming interface (API) was released on 28 May 2008. FPERS was developed with an intention to collect and display the huge amount of relevant geospatial imagery, including Formosat-2 pre- and post-flood imagery (2-m resolution) used to detect and monitor barrier lakes, the synthetic aperture radar (SAR) imagery used to derive an inundation map [4], and the high-spatial-resolution photos taken by unmanned aerial vehicles (UAV) to evaluate the damage to river channels and structures due to a debris flow [5] In spite of these successes, these data were mainly used for disaster assessment at the post-flood stage. The capability of switching among different topographic models, as well as the flexibility of managing and searching for data through a geospatial database system, are explained in this paper, and suggestions are made for future works
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have