Abstract

Memory properties of a nanodot-type floating gate memory with Co-bio-nanodots (Co-BNDs) embedded in HfO2 were investigated. High density and uniform Co-BNDs were adsorbed on a HfO2 tunnel oxide using ferritin. The fabricated MOS capacitor exhibited a capacitance-voltage curve with large hysteresis. The memory window size was 30 times larger than that of the MOS capacitor with an SiO2 gate oxide. Not only a large memory window but also excellent charge retention and reliability characteristics were obtained for an MOS field-effect transistor. The high-performance nanodot-type floating gate memory was first fabricated at low temperature by utilizing supramolecular protein.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.