Abstract

The memory characteristics of nanodot-type floating gate memory with high-k tunnel oxide were investigated by measuring the memory characteristics of metal–oxide–semiconductor (MOS) capacitors with biomineralized inorganic nanodots. Biomineralized iron bio nanodots (Fe-BNDs) accommodated in ferritin were utilized as a storage charge. High-density and monolayer Fe-BNDs were absorbed by high-k tunnel oxide. Fabricated MOS capacitors showed clear hysteresis in capacitance–voltage (C–V) characteristics. The observed hysteresis in C–V characteristics was occurred by charging and discharging to Fe-BNDs. A large memory window and good retention characteristic were obtained using high-k as tunnel oxide. This is caused by the difference in the charging mechanism to Fe-BND. This research confirmed that the combination of bio nanodot floating gate memory with high-k film is promising for next-generation memory devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.