Abstract

We investigate flexural geometry and rheology of the India plate beneath the eastern Himalaya from a new gravity data set acquired in Bhutan. Compared to the well‒studied Nepal Himalaya, the obtained Bouguer anomaly profiles across the range show shorter wavelength flexure of the lithosphere with a narrower and shallower foreland basin. This new data set and seismic Moho constraints are interpreted together in terms of lithospheric flexure using a 2‒D thermomechanical model. Our results suggest that the strongest layer of the continental lithosphere beneath Bhutan is the upper mantle, as it is beneath Nepal. The observed west‒to‒east decrease in flexural wavelength is associated with weakening mantle rheology. The simulations show that this decrease can be related to ductile mantle behavior: either hydrated wet dunite or dry and hot olivine rheology. Both models display decoupled lithospheric layers leading to an eastward decrease of flexural rigidity from ∼1024 to ∼5·1022 N m in Nepal and Bhutan, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call