Abstract
Functionally graded material (FGM) typically consists of two constituent materials combined together with a particular distribution. A non-linear flexural stress analysis of through-thickness functionally graded uniform slender beam, subjected to a uniformly distributed load, is studied using the versatile finite element method based on Euler–Bernoulli beam hypothesis. The von-Karman strain–displacement relations are used to account for geometric non-linearity. Simply supported and clamped FGM beams with axially immovable ends are considered. Governing non-linear equations are obtained using the principle of virtual work. Numerical results are provided to show the effect of boundary conditions and volume fraction exponent on the non-linear structural behaviour, in terms of the strains and stresses, of the FGM beams, for the first time. A shift in the neutral axis, from the mid-thickness of the beam, is observed due to the large transverse deflections, for the homogenous as well as the FGM beams. The throu...
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have