Abstract
Using Biot’s consolidation theory, effect of poroelastic bed on flexural gravity wave motion is analyzed in both the cases of single-layer and two-layer fluids. The model for the flexural gravity waves is developed using linear water wave theory and small amplitude structural response in finite water depth. The effects of permeability and shear modulus of poroelastic bed and time period on flexural gravity wave motion are studied by analyzing the dispersion relation, phase speed, plate deflection, interface elevation and pressure distribution along water depth. Various results for surface gravity waves are analyzed as special cases. The study reveals that bed permeability retards the hydrodynamic pressure distribution along the water depth significantly compared to shear modulus whilst, floating plate deflection decreases significantly with change in shear modulus compared to permeability of the poroelastic bed. The present study can be generalized to analyze various wave–structure interaction problems over poroelastic bed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.