Abstract

Aluminium hybrid foam (HF) core sandwich structures with carbon fiber-cold setting resin as face sheets have been made. The flexural properties and energy absorption of these sandwich structures have been analyzed through three-point bending (3 PB) test. It is found that with the use of a double-layer carbon fiber sheet, the flexural load carrying capacity of the sandwich structure increases up to eight times as compared to that of bare foam (BF) structure. Whereas, the bending stiffness of the structure is nine times to that of BFs and energy absorption is 58% more than that of BF. It is also found that with the increase in foam core thickness the flexural load carrying capacity, bending stiffness and energy absorption capacity of the sandwich structure increases significantly. The specific strength and bending stiffness increase as compared to that of face sheet due to the addition of foam at the core. The deformation behavior of different sandwich structures was analyzed to investigate the different modes of failure during bending.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call