Abstract

The most crucial components in the case of roofs with two levels or a variable floor height are variable depth beams. In order to investigate the flexural behavior of reinforced concrete (RC) beams with varying depths under static loads, experimental research was conducted. Under the four-point bending flexural test, two reference beams with constant depth, six dapped beams at the soffit, and four dapped beams at the top were tested. For all beams with a 150 mm depth, a 100 mm increase in depth occurred at the middle span of the beams. The primary characteristics included the impact of increasing depth, the impact of stirrups’ absence and their various ratios, and the characteristics of the longitudinal bars at the locations of sudden depth changes in either the top or bottom bars. Both the cracks’ progression and the load-deflection relationship along the beam’s length were observed. The ultimate carrying load (Pu) was reduced by 23.56% and 27.35% as a result of the 100 mm increase in the half-span of the beam over the constant depth in case of changes at the top and soffit, respectively. The Pu was increased by a ratio ranging from 20.9% to 31.35% for the bottom dapped beams and by a ratio of 29.79% for the top dapped beams due to the various stirrup ratios in the dapped area. The ductility was significantly impacted by the elevated stirrup ratios in the dapped area. The predicted results and the experimental results matched when the Pu of the tested beams was evaluated using the strut and tie model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call