Abstract
Fused Deposition Modelling (FDM) technology is among the lowest cost 3D printing technology for processing thermoplastic and composite materials. FDM has been highly used in additive manufacturing due to its ability to process complex parts with accurate dimension and lowest cost possible. FDM technology has limited working temperature; hence the materials used in FDM such as polylactic acid (PLA) have a relatively low melting temperature. The drawback of these thermoplastic printed through FDM is the lack of mechanical strength and properties such as thermal and electrical conductivity to print functional part. These problems have led to the development of new composite filament for FDM technique. In this research, polymer-matrix composite (PMC) with 25 wt.% and 80 wt.% of copper reinforced polylactic acid (PLA) specimens have been printed with different infill patterns (Rectilinear, Grid, Concentric, Octagram-spiral, and Honeycomb) to study its flexural properties. The flexural test was carried out according to ASTM D790. This study found that there is a significant effect of the two parameters towards flexural properties. From the flexural test, the preliminary result of flexural strength and flexural modulus were obtained. The flexural strength is 25.98 MPa achieved by the 25 wt.% Cu composition specimens with Concentric infill pattern. The flexural modulus is 0.3306 GPa achieved by the 80 wt.% Cu composition specimens with Concentric infill pattern.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IOP Conference Series: Materials Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.