Abstract

In this study, the use of flexographic printing was investigated for low cost, high volume production of devices incorporating nanowires through the printing of zinc acetate precursors on a substrate used to form zinc oxide (ZnO) seeds for the growth of nanowires using a hydrothermal growth technique. The printing of precursors allows the selective area growth of ZnO nanowires, which has implications in high-yield production of devices incorporating ZnO nanowires. The work presented here achieved printed line widths of <60 μm with low edge distortion (<3 μm) using a printing plate with a line width of 50 μm. The hydrothermally grown ZnO nanowires show uniform density of growth over the printed area with nanowire diameters between 40 and 60 nm on both silicon and polyimide substrates. Energy-dispersive x-ray spectra showed contamination-free crystals with a 1:1 (zinc to oxygen) stoichiometry. Crystal orientation is along the c-axis with high quality crystalline structure shown using x-ray diffraction spectroscopy and high resolution transmission electron microscopy. A ZnO nanowire gas sensor, fabricated using the flexographic printing technique, is demonstrated. Such a printing-assisted fabrication offers low cost, high volume production of devices incorporating ZnO nanowires, ranging from gas sensors to field emission devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.