Abstract

A high-entropy oxide nanocomposite with Ag(CuZn)(AlCr)2O4 and CuO phases is fabricated to form an abundantly hierarchical wrinkled surface. Application of a mechanical force to the nanocomposite resulted in a nonhomogeneous strain gradient at the interface between the Ag(CuZn)(AlCr)2O4 and CuO phases, changing the local charge distribution and creating flexoelectric polarization that delayed electron/hole recombination. Transmission electron microscopy energy-dispersive X-ray spectroscopy mapping revealed that the Ag, Cu, Zn, Al, Cr, and O elements were highly distributed throughout the nanocomposite. The nanocomposite produced 2116 μmol·g-1 h-1 of H2 without external light irradiation, which is 980% higher than the H2 produced by the same nanocomposite under the photocatalytic process. A strong electrical field is observed at the interface between the Ag(CuZn)(AlCr)2O4 and CuO phases, demonstrating that a flexoelectric potential (flexopotential) is established at the structural boundaries because the strain gradient is localized at these interfaces. The nanocomposite is a promising approach for environmentally friendly energy production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.