Abstract
Flexible positive pressure sensors have been studied extensively and have been used in a lot of scenarios. However, negative pressure detection is also in demand in some scenarios, such as fluid mechanics analysis, air pressure sensing, and so on. Flexible wearable sensors that can detect both positive and negative pressures will greatly broaden the application field. In this paper, we report a flexible highly sensitive ionic gel (IG) pressure sensor, which is simple and of low cost to prepare and can reliably detect a large pressure range from -98 to 100 kPa under an atmospheric pressure of about 982 hPa. The IG dielectric layer is composed of polyvinyl alcohol and phosphoric acid with a random microstructure of sandpaper inversion. The sensor exhibits flexibility, cycling stability, and high sensitivity under both negative and positive pressures (S = 84.45 nF/kPa for the negative pressure section, S = 25.61 nF/kPa for the positive pressure section). These sensors could be worn on the body not only to test breathing and pulse but also to measure air pressure for estimating the altitude, showing that the flexible full-pressure sensors have a wider application range in wearable electronics.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have